Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination
نویسندگان
چکیده
BACKGROUND Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype. RESULTS Allium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding completely marker free plants. CONCLUSIONS The present study establishes the efficient expression of the newly introduced insect resistant ASAL gene even after Cre/lox mediated recombination resulting in elimination of selectable marker gene.
منابع مشابه
Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملStrategies for generating marker-free transgenic banana plants based on the Cre-lox site-specific recombination system
Bananas and plantains are an important source of food and income for millions of persons in the world. Their production is constrained by many biotic and abiotic stress factors but their improvement through traditional plant breeding methods is very difficult because they do not produce seeds, are polyploid and have a long generation time. Biotechnological approaches like genetic transformation...
متن کاملConcerns of resistant markers in marine ecosystem transformed plants
World population growth and requirement to global food security, application of genetic engineering and utilization of transgenic organisms have made more important. Using this technology, without regarding to its risks, can cause loses to environment. To generate transgenic organisms, selection systems are applied that cause to selective growth of transformed cells. Antibiotic resistance genes...
متن کاملGene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion
BACKGROUND Practical approaches for multigene transformation and gene stacking are extremely important for engineering complex traits and adding new traits in transgenic crops. Trait deployment by gene stacking would greatly simplify downstream plant breeding and trait introgression into cultivars. Gene stacking into pre-determined genomic sites depends on mechanisms of targeted DNA integration...
متن کاملDevelopment of PR genes panel for screening aphid-tolerant cultivars in Brassica juncea
The exorbitant yield loss incurred by Indian farmers every year (10-90%) in rapeseed-mustard (Brassica juncea) is chiefly attributed to the progressive infestation of mustard fields by Lipaphis erysimi (Kalt.), a major insect pest belonging to the family of Homoptera. Currently there are no successful tolerant cultivars developed by conventional means in Brassica juncea with systemic plant resp...
متن کامل